Crash Modification Factor (CMF) Short List WSDOT

Lynn Peterson Secretary **Cam Gilmour** Deputy Secretary

Jennene Ring
Traffic Safety Engineer

Applying (or misapplying!) CMFs Webinar December 11, 2014

CMF Working Group Goals

Assist region personnel selection of appropriate CMFs

Create a list of easily identifiable and consistent CMFs.

Working Group Resources

The group provides support identifying appropriate CMFs, and interim CMFs where no applicable CMF exists.

CMF Short List

WSDOT Crash Modification Factor (CMF) "Short List" Revised March 10, 2014

This list is provided to aid in evaluation of the effectiveness of proposed safety countermeasures in an efficient and consistent manner

Crash Modification Factors (CMFs) must be used within the context shown.

* Interim CMFs may be used for any project.
These CMFs will be replaced with more statistically reliable CMFs matching the context and application for the countemeasure when available.

The short list is not comprehensive. Users are free to explore crash modification factors from other sources.

If CMFs from other sources are identified, concurrence from the funding division must be obtained prior to use.

The CMFOleraimphouse can be a good source of information and is found at http://www.omtbearinghouse.org/

WSDOT Reference Number	Cate gory Pavement	Countermeasure Context	Crash Pattern Affected	CMF	Interim Status*	Std Error	Original Date Discussed	Date Approved	Date Study Reference	Star Rating	Notes
	Enhancements	Shoulder Rumble Surpo New milled in shoulder rumble strips for single wehide run off the road collisions on:									
CMF #3586 CMF #3448			Rural Freeways, All Severity Collisions Rural Freeways, Fatal & Injury Collisions	0.89 0.84		01 01	10/23/2013 10/23/2013	10/25/2013 10/25/2013	NCHRP Report 641: Guidance for the Design and Application of Shoulder and Centerline Rumble Strips pages 1-3 and 80	3 4	
CMF #3594 CMF #3388			Rural Two-Lane Roa ds, All Severity Collisions Rural Two-Lane Roa ds, Fetal and Injury Collisions	0.85 0.71		01 01	10/23/2013 10/23/2013	10/25/2013 10/25/2013		3	
CMF #195	Pavement Enhancements	Friction Surfacing Install Friction Surfacing in locations with over represented Wet Pavement Crashes and Low Friction Numbers (32 or less)	Reduction of Wet Pevement Collisions , All Severities	0.43		0.03	0 d -13	1/8/2014	NCHRP Report 617 Accident Modification Factors for Traffic Engineering and ITS Improvements Pages 22- 24 and TRR: burnal of the TRB No. 2068 Safety Effects of Targeted Program to Improve Skid Resistance, pages 135-139	4	
	Pavement Enhancements	High Friction Surface Treatment									
		Install HFST in locations with higher the n normal incidence of wet payement skid type collisions									
Interim CMF #195			Ramps - Wet Road Crashes, All Severities Study CMF 0.22 with Standard Error 0.041	0.40	Interim	N/A	1/8/2014	1/8/2014	Evaluation of Low Cost Improvements - Pooled Fund Study - Phase VI Strategies 26-29 Pavement Safety Performance		
Interim CMF #195a			Curves - Wet Road Crashes, All Severities	0.48	Interim	0.064	1/8/2014	1/8/2014	Merritt, Lyon, Persaud		
	Intersections	Roundabout (Signal to Roundabout) Convert Signal to Roundabout	Urban or Suburban, Multilane Roundabout Traffic Volumes 5300 - 52500 ADT						NCHRP Report 705 "Evaluation of Safety Strategies at		
CMF #4252			All Collision Types - All Severities (KABCO) For AADT with total entering volumes greater than 18000 use CMF = 1	0.79 1.00		0.05	3/6/2014	3/6/2014	Signalized Intersections"	4	
CMF #4253			All Collision types - Fatal & All Injury (KABC)	0.34		0.06	3/6/2014	3/6/2014		4	
			Urban or Suburban, Single lane Roundabout Traffic Volumes 5300 - 52500 ADT								
CMF #4256			All Collision Types - All Severities (KABCO)	0.74		0.09	3/6/2014	3/6/2014		3	
			For AADT with total entering volumes greater than 18000 use CMF = 1	100							
CMF #4257			All Collision types - Fetal & All Injury (KABC)	0.45		0.09	3/6/2014	3/6/2014		3	

Notes contained on the Short List

The short list is not comprehensive. Users are free to explore crash modification factors from other sources.

If CMFs from other sources are identified, concurrence from the funding division must be obtained prior to use.

The CMFClearinghouse can be a good source of information and is found at: http://www.cmfclearinghouse.org/

Notes contained on the Short List

The short list	t is not comprehensive. Users are free to explore crash modification factors from other sources.								
If CMFs from other sources are identified, concurrence from the funding division must be obtained prior to use.									
	The CMFClearinghouse can be a good source of information and is found at: http://www.cmfclearinghouse.org/								

This list is provided to aid in evaluation of the effectiveness of proposed safety countermeasures in an effice the context shown.						nt and consiste	nt manner	
		Crash Mo	dification Factors (CMF	s) must be used wi	thin the context shown.			

Notes contained on the Short List

The short list is not comprehensive. Users are free to explore crash modification factors from other sources.										
If CMFs from other sources are identified, concurrence from the funding division must be obtained prior to use.										
	The CMFClearinghouse can be a good source of i	nformation and is found at: http://www.cmfclearinghouse.org/								

This list is pro	vided to a	id in evaluation of the	effectiveness of pro	oposed safety countermeasures in an efficient	t and consister	nt manner	
	Crash Mo	dification Factors (CMF	s) must be used wi	thin the context shown.			


Interim CMFs may be used for any project.

These CMFs will be replaced with more statistically reliable CMFs matching the context and application for the countermeasure when available.

Each Countermeasure is Accompanied by a Review Form

CMF Review Form CMF Working Group

Documentation for CMF Identification/Recommendation for Inclusion into the WSDOT CMF Table

Outer Completed: 15/10/14

Date that FHWA CMF Desinghouse Was Accessed: 96/18/2894

Reference ID (leave blank):

Date that OMP(s) were Added to the WSDOT (DW Table (James blank): 18/18/14

Courtemessure/ Intervention Description:

Install Two-Way Left Turn Lane on a 2-Lane Road

Context	Crash Modification Factor (CMF)	Sandard Otter	WSD01 Reference Number	22
Rural Locations All Draft Types Associated vs/ Lt Turts All Secrettio 904000)	E84*	0.04	W-583	ě
Rear End Creative Associated vol Lit Turts At Seventies (KADCO)	437*	4.00	W-SES	ŧ
Urban Locations				
All tresh Types Associated w/ Lt Turns All Seventies (KABCO)	6,797		W 2341	1
All Creek Types Associated w/ LETurns Ratel, Serious SPAnor Injury (XASC)	6.759	100	W-2348	1
Rest End Crashes Associated w/ Lt Turts All Secential: (KADCO)	6.610		W-2351	1

"The HSM also has a function for installing at center TMCTL on a rural 2 lane road (see page 2). The function is based on driveway density and the proportion of crashes subject to correction by a TWLTL. Either the CMTs allows or the function may be used for WEDOT projects.

Completed by:

Jernate Ring Traffic Salely Engineer, WISDOT HQ Traffic

Off Benedigter

mgsbeekkeepe

1. Findings of Soverse
Is the recommended CMF for INTERIM STATUS ONLY? Its

Speed, Speed prot less than 65 mark

Adjusted land use/ development: see Section 2

Presence of Streets and/or pedestrace: n/s Weether conditions: n/s

Type of study, sample size, and notes on the study: The study used expirite larger for observational before-

Geometric. Haffer, and chark 15th serve obtained for 76 alon (21.1 mm) in North Caroline, 10 alon (6 ml) or illnoor.

In alon (60 ml) in Collection and 25 alon (22.1 ml) in Arizonau. There was a statistically applicant reduction in that and conversed residence in sold of the four states. And includations were found to be seen effective to making createst from a form your in sold of the four claims.

Segment MADTs ranged from a resonant of SSE validation is a resonant of 26.677 satisfac-

If in the FWWA CMF Cleaninghouse . CMF ID: 2341, 2365, 2351, 503, 6-501 minut CMF Clearinghouse star rating: 5

Other Information Decreed Critical to Cornect Application: See Section 5: Source Decreest. Lists Evaluation of Installing Carter Tracking Lists and Tracking Indiana. Anieyunt Page Numbers: 1 - 29

2. Special Notes for Appropriate Application

The report provided the following fogual consideration:

"...locations with a high frequency of rear-end collisions, especially those involving a lead which during to make a turn, would experience a greater solute benefit from the treatment and would be price classificate. For installing TMCTLs.*

Foolution of installing Code Two-view Left four Lane or Tro-Lane Scale, pg.21

3. Special Notes for Circumstances Where CRF Values Would Not Be Applicable

MIN

4. List All Source Documents that Were Reviewed

Safety Evaluation of Distalling Cartier TrayWay Laft-Turn Lanse on Travillane Reach MWW-HET-CH-DCJ pages 2195

Chill Statute Town

CMFID	Study Title	Countermeasure		Crash Type	Crash Severity	Roadway Type	Area Type	Publicati	Star	Adjusted Standard Error of	ed Standard	Included in First Edition of Highway Safety Manual	Type of Study Methodology	State	Size Unit	Sample	After Sample Size	Begin Year of Data	End Year of Data
	Safety Evaluation of																		
	Installing Center Two-Way	Introduce TWLTL (two-way											Before/after using						1
	Left-Turn Lanes on Two-	left turn lanes) on rural two				Not							empirical Bayes or full						1
583	Lane Roads	lane roads	0.64	All	All	specified	Rural	2008	5	0.04	0.03	по	Bayes						
	Safety Evaluation of																		1
	Installing Center Two-Way	Introduce TWLTL (two-way											Before/after using						1
	Left-Turn Lanes on Two-	left turn lanes) on rural two				Not							empirical Bayes or full						1
583	Lane Roads	lane roads	0.53	Rearend	All	specified	Rural	2008	5	0.05	0.04	по	Bayes						
	Safety Evaluation of																		1
	Installing Center Two-Way												Before/after using						1
	Left-Turn Lanes on Two-	Install TWLTL (two-way left				Not							empirical Bayes or full	AR,CA,IL,	Mile-				1
234	Lane Roads	turn lane) on two lane road	0.797	All	All	Spedified	All	2008	5		0.03	по	Bayes	NC	years	582	582	1990	2004
	Safety Evaluation of																		
	Installing Center Two-Way				Fatal,Serious								Before/after using						1
	Left-Turn Lanes on Two-	Install TWLTL (two-way left			injury,Minor	Not							empirical Bayes or full	AR,CA,IL,	Mile-				1
234	Lane Roads	turn lane) on two lane road	0.739	All	injury	Specified	All	2008	5		0.068	по	Bayes	NC	years	582	582	1990	2004
	Safety Evaluation of																		
	Installing Center Two-Way												Before/after using						1
	Left-Turn Lanes on Two-	Install TWLTL (two-way left				Not							empirical Bayes or full	AR,CA,IL,	Mile-				1
2351	Lane Roads	turn lane) on two lane road	0.613	Rearend	All	Specified	All	2008	5		0.04	по	Bayes	NC	years	582	582	1990	2004

$$CMF = 1.0 - (0.7 \times P_{dwy} \times P_{LT/D})$$

$$(16-3)$$

$$P_{\text{cluy}} = \frac{(0.0047*DD) + (0.0024*DD^2)}{1.199 + (0.0047*DD) + (0.0024*DD^2)}$$
(16-3A)

Where:

Pdwy = driveway-related crashes as a proportion of total crashes;

DD = driveway density (driveways per mile); and

 $P_{LT/D}$ = left-turn crashes subject to correction by a TWLTL as a proportion of driveway-related crashes (can be estimated to be 0.5).

Rural Locations

All Crash Types Associated w/ Lt Turns All Severities (KABCO)	0.64*
Rear End Crashes Associated w/ Lt Turns All Severities (KABCO)	0.53*

Urban Locations

All Severities (KABCO)	0.757
All Crash Types Associated w/ Lt Turns Fatal, Serious &Minor Injury (KABC)	0.739
Rear End Crashes Associated w/ Lt Turns All Severities (KABCO)	0.613

0.707

All Crash Types Associated w/ Lt Turns

The short list is housed on the Sustainable Safety Intranet Site

Intranet Home **Project Delivery Employee Center Data Drawer** WSDOT A-Z Sustainable Highway Safety and Risks Go WSDOT's Highway Safety Program Enterprise Risk A Long-range, Strategic, Engineering Approach to Achieve Target Management Home Zero Laws and Regulations The purpose of WSDOT highway safety projects and programs is to save lives and reduce the potential for injury. The ultimate goal is to reduce the number of serious Leadership and fatal crashes. More specifically, to reduce the number of fatal and serious injury collisions to zero by the year 2030 as establish in the Washington State Strategic Functional Areas Highway Safety Plan: Target Zero. Strategic Planning What is Sustainable Safety? Priority Programming Sustainable Safety is a combination of state-of the-art comprehensive processes Pre-Design and Scoping and engineering tools that use quantitative data and scientific engineering methods Project Design and within the department's safety management process to: Construction Traffic Operations Provide a sustainable, ongoing reduction in fatal and serious injury collisions Resources Identify the most critical highway safety risks involved with fatal and Manuals & Guidance serious injury collisions Tools Identify the actual or potential collision locations with the greatest potential Countermeasures for reducing the number and severity of collisions Identify the most effective and cost efficient countermeasures to address Reports the primary contributing factors to fatal and serious injury collisions News · Compare anticipated outcomes between various combinations of Useful links countermeasures Contact us Compare actual outcomes of project performance to the anticipated outcome

Intranet Home Project Delivery WSDOT A-Z Employee Center Data Drawer

Sustainable Highway Safety

Laws and Regulations

Leadership

Functional Areas

Strategic Planning
Priority Programming
Pre-Design and Scoping
Project Design and
Construction
Traffic Operations

Resources

Manuals & Guidance Tools Research Reports News Useful links

Sustainable Highway Safety Countermeasures

AASHTO Resources

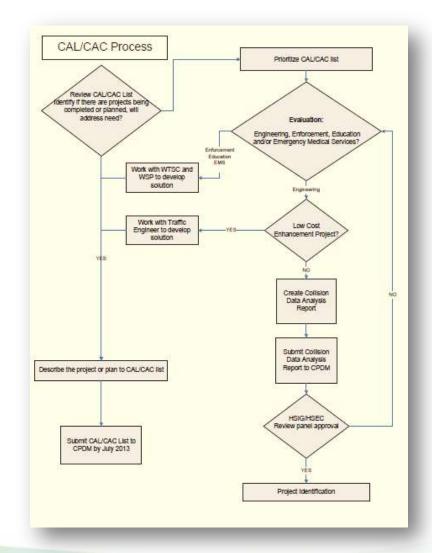
- Crash Modification Factor Clearinghouse
- Combining_Multiple_CMFs_Final.pdf (pdf 395 kb)
- CMF Newsletter
- Star Quality Rating explanation

Crash Modification Factor (CMF) Review Forms

Form template (doc 59 kb)

- Shoulder Rumble Strips (doc 76 kb)
- Convert Signal to Roundabout (doc 70 kb)
- Friction Surfacing (doc 65 kb)
- Convert Stop Control to Roundabout (doc 68 kb)
- High Speed Roundabouts (doc 65 kb)
- J-Turn (doc 300 kb)
- TWLTL Added to 2-lane Rural Road (doc 177 kb)
- High Friction Surface Treatment (doc 61 kb)

CMFShort List (xls 23 kb)



Capital Safety Prioritization

HQ Capital Program
Development and
Management office (CPDM)
runs a network screening
statewide.

The west side of the state and east side of the state are evaluated separately for prioritization.

The flowchart is followed for prioritization of projects.

Collision Data Analysis Guide for Countermeasure and Design Element Selection

Prepared by:
Washington State Department of Transportation
Region Region Address
Dity, WA Zip

1. INTRODUCTION

- 1-1. General location/comidor description
- 1-2. Describe geometric general characteristics of the facility including:
 - Location Geometrics 1-21
 - Traffic Volume/Truck Percentage 1-22
 - 1-23 Posted Speed
 - 1-24 Urban/Rural
 - 1-25 Roadway Functional Class (match design manual language)
 - 1-26 Roadside Fixed Objects (RFIP)
 - Other key location specific characteristics (e.g., 1-27 environmental, R/W conditions, access issues, etc.)
- 1-3. Conditional Diagram

2. DIAGNOSTICS

Diagnostic can be performed using the SafetyAnalyst tool.

- 2-1. Collision Frequency (number of collisions in analysis period)
- 2-2 Collision Type Table
- 2-3 Descriptive Crash Statistics Contributing Circumstances can be performed using Safety Analyst. Safety Analyst provides summary statics for 29 data elements.
 - Human Factors
 - b Speeding
 - o Inattentive
 - o DUI
 - Roadway Location(Roadway, Shoulder, Left, Right, Roadside)
 - Vehide Type
 - e Light Conditions
 - Environmental conditions
 - Other Descriptors
- 2-4 Summarizing Crash by Location -Collision Diagram

3. COUNTERMEASURE SELECTION

- 3-1. Alternative Evaluation
 - 3-1.1 Human Factors (If there is no Engineering solution)
 - a Education
 - b. Enforcement
 - c. Emergency Medical Services
 - 3-1.2 Engineering
 - a. Operations (Program Q-Low Cost Enhancements)
 - b. Roadway (Systematic, Spot, Comidor)
 - c. Roadside (Systematic, Spot, Corndor)
 - d. Intersection/Access (Systematic, Spot, Corridor)
 - 3-1.3 Description of Counter Measure Assumptions (CMF selection)
 - 3-1.4 How CM Addresses Contributing Circumstances
 - 3-1.5 Basis for Selection (Counter Measure)
 - 3-1.6 Basis for CMF Value Used
 - 3-1.7 Cost Assumptions

3-2. DESIGN EVALUATION OF COUNTER MEASURE.

This section is required to calculate Predicted Average Crash Frequency and Expected Average Crash Frequency

The EB Method should be applied for the following

- · No Build Option (e.g., "do-nothing)
- # of through lanes consistent (e.g., the roadway cross section is modified but the basic number of through lanes remains the same)
- Minor alignment changes
- Passing lanes
- · Any combination of above

The EB Method should NOT be applied for the following

- · New Alignment
- · Change in # intersection legs
- · Change in traffic control

Therefore,

- If your proposed solution is such that the EB method is applicable, then you
 could use the EB method for both the existing and proposed solutions.
 If your proposed solutions are such that the EB method is not applicable to
- If your proposed soutions are such that the EB method is not applicable to any segment or intersection, then you can still use the EB method for the existing conditions. For the proposed, you would apply the Part C predictive method without EB.

*For roundabout, please use "Interim Predictive Method" HCM section 12.9. 3-2.1 Detailed Design Analysis (Part C)

Highway Safety Manual (Chapter 10, 11 and 12)

3-2.2 Crash Frequency Estimate

Crash Frequencies (crashes/year)	Base	Alternative 1	Alternative 2
Total Predicted Average			
Patal and Injury (FI) Predicted Average			
Property Damage Only (PDD) Predicted Average			
Total Vehicle Expected Average			
Fatal and Injury (FI) Vehicle Expected Average			
Property Damage Only (PDO) Vehicle Expected Average			
Total Vehicle-Pedestrian Expected Average			
Total Vehicle-Bicyde Expected Average			

3-2.3 Adoption or Modification to Counter Measure DESIGN ELEMENT(S) SELECTION

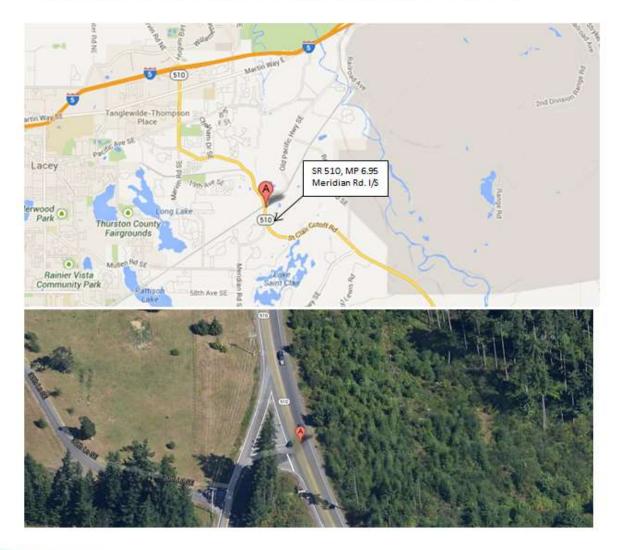
3-2.4 Design Elements Affected by Selected CM

a DEAT

Select Design Level

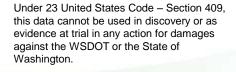
3-2.5 ECONOMIC APPRAISAL

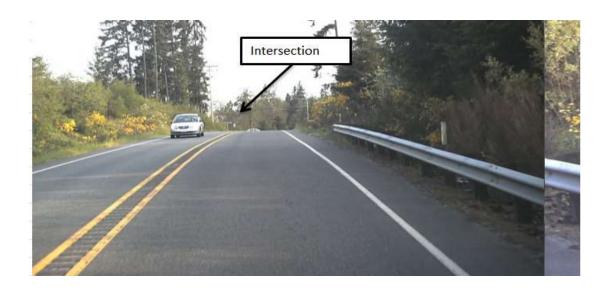
Alternative		Estimate	Present Value of Estimated Change in Crash Frequency	Benefit/ Cost
	200		57-15	

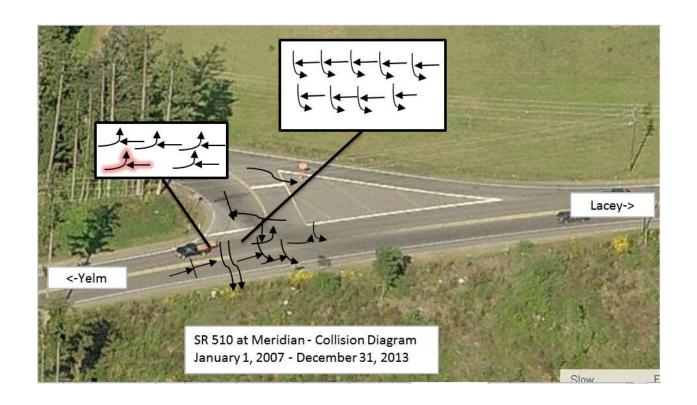

4. PROPOSED COUNTER MEASURE(S)

Description of Counter Measure Selection

Collision Data Analysis

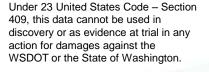

Countermeasure and Design Element Selection





Countermeasures Evaluated

- Realign intersection and install left turn channelization
- Install Roundabout
- Install Signal and left turn channelization
- Install left turn channelization without realigning the intersection.


- CMF Increase Triangle Sight Distance (CMF ID #307) – **CMF = 0.53** (3-star rating)
- This CMF is for 4 leg intersection, all roadway types, serious injury and minor injury collisions. While not directly related to the proposed improvement, the improvements do improve sight distance, and thus the CMF should be in the ball park.
- Rural CMF = 0.53 (CMF ID #307)
- Urban CMF = 0.53 (CMF ID #307)

- CMF Installation of Left-Turn Lanes on Intersection Approaches – Table 10-13 HSM
 CMF = 0.56
- This is for a 3 leg intersection, stop control on minor leg
- Rural CMF = 0.56 (Table 10-13)
- Urban CMF = 0.67 (table 12-24)

- CMF Conversion of Rural Minor Stop Controlled Intersection into Modern Roundabout (CMF ID #230) CMF = 0.13 for all fatal and injury crashes (5-star rating)
- Rural CMF = 0.13 *(CMF ID #230)*
- Urban CMF = 0.22 (CMF ID #234)

- CMF Install a traffic signal (CMF ID #325)
 CMF = 0.56 (5-star rating)
- This is for rural, stop controlled intersection, 3 or 4 legs, all collision types, all collision severity
- CMF Installation of Left-Turn Lanes on Intersection Approaches – Table 10-13 HSM CMF = 0.56
- This is for a 3 leg intersection, stop control on minor leg

- CMF Installation of Left-Turn Lanes on Intersection Approaches Table 10-13 HSM
 CMF = 0.56
- This is for a 3 leg intersection, stop control on minor leg

SAFETY BENEFITS Cost Analysis worksheet for Safety Scoping for 2015-2017

SR 510 Posted Speed: 50

Project Title: Meridian Road - Install Roundabout

Subject Section: MP 6.95 to MP

1a. Initial Project Cost, I \$ 1,820,000

2. Annual Op. Costs, H \$ 500 (if there are annual benefits, enter as a negative value)

Existing Conditions

Existing Conditions

Site Subtype

Expected Average Crash Frequency (Fatal and All Injury)

Proposed Conditions

Site Subtype

Expected Average Crash Frequency (Fatal and All Injury)

Urban and Suburban Arterials-3-Leg Intersection /Stop Control on Minor

1.164

Roundabouts

0.256 (Used CMF of 0.22)

Proposed Conditions

Applied a CMF of 0.22 (CMF #234) to the N_{expected}(FI) = 1.164*0.22 = 0.256

Existing Conditions		Proposed	1.104 0.22 - 0.230	
	Expected		Predicted	
	Average Crash		Average Crash	
	Frequency by		Frequency by	
Distribution for	Crash Severity	Distribution for	Crash Severity	
Crash Severity	Level	Crash Severity	Level	
Level: Table1	(crash/year)	Level: Table1	(crash/year)	Ann. Benefit
1%	0.01	0%	0.00	0.01
6%	0.07	0%	0.00	0.07
26%	0.31	36%	0.05	0.25
67%	0.78	64%	0.09	0.68
	Distribution for Crash Severity Level: Table1 1% 6% 26%	Expected Average Crash Frequency by Crash Severity Level: Table1 1% 0.01 6% 0.07 26% 0.31	Expected Average Crash Frequency by Distribution for Crash Severity Level: Table1 1% 0.01 0% 6% 0.07 0% 26% 0.31 Expected Average Crash Frequency by Crash Severity Level Crash Severity Level: Table1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	Expected Average Crash Frequency by Distribution for Crash Severity Level: Table1 1% 0.01 0% 0.00 6% 0.07 0% 0.00 26% Predicted Average Crash Frequency by Crash Severity Level: Table1 (crash/year) 0% 0.00 0.00 0.00 0.00

Costs Per Collision	Annual Safety Benefits by Costs of Collisions			
Collision Type	Costs			
a) Fatality	\$2,000,000	a) Annual Benefit*Cost=	\$19,223	
b) Disabling injury	\$1,000,000	b) Annual Benefit*Cost=	\$72,085	
c) Evident Injury	\$100,000	c) Annual Benefit*Cost=	\$25,478	
d) Possible Injury	\$70,000	d) Annual Benefit*Cost=	\$47,922	
		f) Total, (B) =	\$164,707	

.45 =		
15 =	_	
.40 -	\$	83,250.00
.40 =	\$	-
.43 =	\$	-
tal, T	\$	83,250.00
	0.43 = otal, T	

Service Life,(n) = 20 (1-20)	Interest Rate, (i)	4%
Present Worth Factor, of a Uniform Service, SPWin		13.59
Present Worth of Cost, PWOC:		
PWOC= I + .68J + SPWin x H - T		\$1,743,545
Present Worth of Benefits, PWOB = B (SPWin)		\$2,238,370
	B/C =	1.283803957

SAFETY BENEFITS Cost Analysis worksheet for Safety Scoping for 2015-2017

SR ______510 _____ Posted Speed: _____50

Project Title: Meridian Road - Install Roundabout

Subject Section: MP 6.95 to MP

1a. Initial Project Cost, I \$ 1,820,000

2. Annual Op. Costs, H \$ 500 (if there are annual benefits, enter as a negative value)

Existing Conditions

Site Subtype

Expected Average Crash Frequency (Fatal and All Injury)

Proposed Conditions

Site Subtype

Expected Average Crash Frequency (Fatal and All Injury)

Rural Two-Lane, Two-Way Roads -3-Leg Intersection/ Stop Control on M

Roundabouts

0.2 (Used CMF of 0.13)

Applied a CMF of 0.13 (CMF #230) to the N_{expected} (FI) = 1.544*0.13 = 0.20

	Existing Conditions		Proposed	Conditions	(FI) = 1.544*0.13 = 0.20		
	Distribution for Crash Severity	Expected Average Crash Frequency by Crash Severity Level	Distribution for Crash Severity	Predicted Average Crash Frequency by Crash Severity Level			
Collision Severity Type	Level: Table1	(crash/year)	Level: Table1	(crash/year)	Ann. Benefit		
Fatality (K)	4%	0.06	0%	0.00	0.06		
Serious Injury (A)	10%	0.15	0%	0.00	0.15		
Evident Injury (B)	40%	0.62	36%	0.04	0.58		
Possible Injury (C)	46%	0.71	64%	0.07	0.64		
				Total	1.43		

Costs Per Collision		Ann	ual Safety Benefits b	у Со	sts of Co	llisions		
Collision Type	Costs							
a) Fatality	\$2,000,000	a)	Annual Benefit*Cos	t=	\$12	26,496		
b) Disabling injury	\$1,000,000	b)	Annual Benefit*Cos	t=	\$14	8,819		
c) Evident Injury	\$100,000	c)	Annual Benefit*Cos	t=	\$5	7,717		
d) Possible Injury	\$70,000	<u> </u>		\$4	\$45,017			
			f) Total, (B) =		\$37	78,049		
7. Salvage Value, T (Opti	onal)							
<u>Feature</u>	<u>Cost</u>				Factor			
a) Right of Way	\$ 60,000.00		(from estimate)	×	0.45	=	\$	27,000.00
b) Grading & Drainage	\$ -		(from estimate)	×	0.40	=	\$	-
c) Structures	\$ -		(from estimate)	×	0.43	=	\$	-
				d) Total, T		\$	27,000.00
Service Life,(n) =	20 (1-20)		In	iterest Ra	te, (i)		4%
Present Worth Factor, of	a Uniform Service,	SPWin						13.59
Present Worth of Cost, PW	VOC:							
PWOC= I + .68J + SPW	in x H - T							\$1,799,795
Present Worth of Benefits	, PWOB = B (SPWir	n)						\$5,137,693
				D	/C =			2.85459883

Existing Roundabouts Existing Roundabouts OProposed Roundabout

For more information on the WSDOT Crash Modification Factor Short List Please contact: Jennene Ring 360-705-7297 ringj@wsdot.wa.gov

